Zero-Emission Transition Financial Analysis: Beaumont Transit

Riverside County Transportation Commission ZEB Implementation & Rollout Plan Project

About CTE

WHO WE ARE

501(c)(3) nonprofit engineering and planning firm

OUR MISSION

Improve the health of our climate and communities by bringing people together to develop and commercialize clean, efficient, and sustainable transportation technologies

PORTFOLIO

\$900 million

- Research, demonstration, deployment
- 100 Active Projects totaling over \$400 million

OUR FOCUS

Zero-Emission Transportation Technologies

NATIONAL PRESENCE

Atlanta, Berkeley, Los Angeles, St. Paul

Introduction

Today's Objective is to review the financial projections for ZEB technology transition scenarios including:

- Fleet Procurements and Capital Cost
- Fuel Costs
- Maintenance Costs
- Preliminary Infrastructure Projects & Costs
- Total Cost of Ownership

Zero Emission Buses — What's Different?

FUEL CELL

- **Propulsion System** •
 - Traction Motor instead of engine
- Energy Storage System
 - Battery instead of fuel tank
 - Hydrogen storage tanks
- HVAC •
 - No "free" heat
 - Electric heater
- Time to "Re-fuel"
 - FCEB: 10 minutes
 - BEB: ~3 hours

H₂

Hydrogen Fueling

ELECTRIC VEHICLE

Fleet Capital Cost Assessment

CARB Innovative Clean Transit Regulation

- 100% ZEB Fleet by 2040 is not a mandate, but a goal
- There is only a *purchasing* mandate:

Starting January 1	ZEB Percentage of Total New Bus Purchases
2026	25%
2027	25%
2028	25%
2029	100%

- Small CA Transit Agencies (<100 buses) are required to submit a board-approved ZEB Rollout Plan by July 1, 2023.
- Beaumont Transit has 0 ZEB bonus credits.

Service Assessment & Feasibility Assumptions

- For fixed-route service, Beaumont 32ft transit bus is replaced with a 35ft ZEB. 40ft vehicles are replaced with 40ft ZEBs. All cutaways are replaced with generic ZEV cutaways.
 - These vehicles are most analogous to one another based on passenger loading and on-board energy.
 - On-route charging is required to maintain fixed-route service in 2027 with the fourth BEB cutaway procurement in the BEB scenario.
 - On-route charging (pantograph or inductive) has not yet been demonstrated for cutaway vehicles. Thus, the BEB scenario is infeasible to maintain service without major changes.
- All demand response service is performed by three (3) 25-26ft cutaways that will require midday or opportunity-charging at the depot.
 - Electrified cutaway service implies required schedule modifications.
 - Two of Beaumont Transit demand response vehicles are electric already.

Fleet Assessment Overview & Assumptions

- Procurements cycles are based on the FTA minimum service life terms of the vehicle types.
 - 25-26ft cutaways are replaced on a 7 year cycle per the service life of larger cutaways.
 - The 32ft transit bus and the 40fts are replaced on the standard transit bus 12 year cycle.
- Vehicles prices for legacy fueled vehicles are based on agency reporting and ZEV pricing is based on the 2022 CA State Contract
 - A 7.75% sales tax is included in the capital price of the vehicle.
 - An inflation rate of 2% is applied year over year for the whole transition period.
 - Beaumont reported several CNG cutaway prices, only the highest was used for this analysis for simplicity.
- Beaumont Transit begins zero-emission vehicle purchases as required by the ICT procurement schedule.
 - 25% of total annual procurement number must be ZEV, if 25% of the total is less than .5, no ZEVs must be purchased. The first ZEB purchase is required in 8 2026.

Bus Procurement Timeline & Annual Costs Baseline

Fleet Composition Baseline

25

Beaumont Transit Baseline Fleet Composition

Bus Procurement Timeline & Annual Costs BEB - not energetically feasible to maintain service; will not be considered further

Fleet Composition BEB - not energetically feasible to maintain service; will not be considered further Beaumont Transit Battery-Electric Bus/Cutaway Fleet Composition

Bus Procurement Timeline & Annual Costs Mixed Fleet

Fleet Composition Mixed Fleet

14

Bus Procurement Timeline & Annual Costs FCEB

Fleet Composition FCEB

25

Beaumont Transit Fuel Cell Electric Fleet Composition

Cte

Comparative Fleet Capital Costs Entire Transition Period, All Scenarios

Beaumont Transit Fleet Procurement Costs

Fuel Cost Analysis

Fuel Cost Assumptions

- Assumes no change to annual fleet vehicle miles traveled.
- All costs are based on 2021 dollars, with EIA inflation for transportation fuels projected through 2040.

Fuel Type	Cost per unit	Avg. Cost per Mile for uniform propulsion fleet for 18-year period	Notes
CNG	\$2.47/GGE	• \$0.38/mile	• Average of agency-reported fuel prices prices across the entire fleet
Gas	\$4.70/gal	• \$0.62/mile	• Average of agency-reported fuel prices prices for entire fleet of gasoline cutaways cutaways
H ₂	\$8.68/kg	• \$0.84/mile	• Average of 2022 prices for CA hydrogen hydrogen fuel for transit end-users contractual agreements. Price contains contains station O&M costs.
Electricity	SCE TOU-EV-9 rate structure	• \$1.36/mile	• See next slide

Assumptions for Electricity Costs

- Electricity costs based on SCE's TOU-EV-9
 - 67% of the agency's DAR requirements can be satisfied with overnight and 33% can be satisfied with opportunity depot charging
 - 48% of the agency's fixed-route requirements can be satisfied with charging, and 52% can be satisfied with on-route opportunity charging

Floctric	TOU Rates	Summer (\$/kWh) (4m)	Winter (\$/kWh) (8m)	Annual
litility	On-Peak	\$0.47		\$0.47
Rates - SCF	Mid-Peak	\$0.29	\$0.33	\$0.32
	Off-Peak	\$0.17	\$0.18	\$0.18
	Super-Off		\$0.11	\$0.11
	Fixed Recovery Charge	\$		0.00066
	\$/Meter/Month	\$		368.25

**Phase-In of Demand Charge shall occur as determined and authorized by the (T) Commission in SCE's next GRC Phase 2 application or any Commission proceeding | related to transportation electrification.

Annual Fuel Consumption Baseline

Beaumont Transit Baseline Annual Fuel Use by Fuel Type (GGE)

21

Annual Fuel Consumption Costs Baseline

The average fuel cost per mile for all fuels utilized in the course of the transition period for this scenario is **\$0.40/mile**.

Annual Fuel Consumption Mixed Fleet

23

Annual Fuel Consumption Costs Mixed Fleet

 The average fuel cost per mile for all fuels utilized in the course of the transition period for this scenario is \$0.51/mile.

Annual Fuel Consumption FCEB

Beaumont Transit Fuel Cell Only Annual Fuel Use by Fuel Type (GGE)

Annual Fuel Consumption Costs FCEB

Beaumont Transit Fuel Cell Electric Fleet Fuel Cost

The average fuel cost per mile for all fuels utilized in the course of the transition ulletperiod for this scenario is \$0.53/mile.

Comparative Annual Fuel Costs For Transitioned Fleet 2040, All Scenarios

27

Maintenance Cost Analysis

Maintenance Cost Assumptions

Annual Vehicle Parts & Labor

- Basic calculation framework is established by NREL reports of per-mile costs for standard buses.
- Calculation items based on mileage-weighted averages from the NREL study data, adjusted to year 2021 dollars.
- Applied a common service life and curb weight for each operator for each class of vehicle.
- This maintenance assessment includes only vehicle maintenance costs for the transition.
 - Hydrogen and CNG infrastructure maintenance is included in the fuel price in the fuel assessment.
 - Charger maintenance is included in the infrastructure assessment.
 - Many other operational and administrative costs are not included.

• Inflation is applied to the costs per mile at 3% per year per the **CPI** Index.

Maintenance Costs Composition

per Mile

\$0.00000 \$0.00694 \$0.03376 \$0.00013 \$0.01631 \$0.00000 \$0.00472 \$0.01045 \$0.01495

\$0.01157 \$0.04318 \$0.00692 \$0.02918

CNG Cost BEB Cost

per Mile

NREL Category and ATA VMRS Items

Exhaust System Repairs (43)	\$0.00706
Fuel System Repairs (44)	\$0.01909
Power Plant Repairs (45)	\$0.04035
Electric Propulsion Repairs (46)	\$0.00000
Air Intake System Repairs (41)	\$0.00507
Cooling System Repairs (42)	\$0.02025
Hydraulic System Repairs (65)	\$0.00017
General Air System Repairs (10)	\$0.00658
Transmission Repairs (27)	\$0.00532
HVAC System Repairs (01)	\$0.01559
Axle, Wheel, and Driveshaft Repairs (11, 18,	
22, 24)	\$0.00964
Electrical System Repairs (30, 31, 32, 33)	\$0.04318
Lighting System Repairs (34)	\$0.00692
Tire Repairs (17)	\$0.02918

NREL Category (with ATA VMRS codes)	Adjusted Model Formulation
Brake System Repairs (13)	CNGs at \$0.0014 per curb weight ton-mile (CWTM). BEBs were assumed to be 45% of CNGs based on ICT Appendix G
Preventive Maintenance Inspections (101)	\$1425/\$1500 per vehicle (cutaway/standard) plus \$0.000072 per CWTM
Car, Body, and Accessory Systems Repairs (02, 50, 71)	Replaced by a new 'Combined Mechanical' category
Frame, Steering, and Suspension Repairs (14, 15, 16)	Replaced by a new 'Combined Mechanical' category
Combined Mechanical (02, 11, 18, 22, 24, 50, 71)	\$0.0072 per CWTM

Maintenance Cost Assumptions

Annual Vehicle Maintenance Parts & Labor

	Legacy Vehicle Type	Maintenance Cost (Per Mile)	
	Gas Cutaway	\$ 0.35	
	CNG Cutaway	\$ 0.35	
	30'/35'/40' CNG Bus	\$ 0.38	
Zero-Emission Vehicle Type			
Zero	-Emission Vehicle Type	Maintenance	Cost (Per Mile)
Zero Bat	-Emission Vehicle Type	Maintenance (\$ 0.	Cost (Per Mile) 32
Zero Bat 30'/35	-Emission Vehicle Type tery Electric Cutaway 3/40' Battery Electric Bus	Maintenance (\$ 0. \$ 0.	Cost (Per Mile) 32 34
Zero Bat 30'/35 Fue	-Emission Vehicle Type etery Electric Cutaway 3'/40' Battery Electric Bus I Cell Electric Cutaway	Maintenance (\$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0.	Cost (Per Mile) 32 34 51

March 29, 2023

Maintenance Cost Assumptions Capital Expenditure in Maintenance Parts & Labor

Vehicle Type	Overhaul (FC/Transmission) Cost Per vehicle life	Battery Warranty Cost Per vehicle life
CNG Cutaway	\$0	\$O
30'/35'/40' CNG Bus	\$30,000	\$O
Battery Electric Cutaway	\$0	\$24,000
30'/35' 40' Battery Electric Bus	\$O	\$75,000
30'/35'/40' Fuel Cell Electric Bus Bus	\$40,000	\$17,000
Fuel Cell Electric Cutaway	\$0	\$10,000

Annual Maintenance Costs Baseline

Capital expenditure for vehicle battery warranties and fuel cell (if applicable) & CNG overhauls for the course of the transition is approx. **\$360K** and covers the cost of this maintenance practice for **58**³³

Annual Maintenance Costs Mixed Fleet

\$350 \$300 \$250 Annual Bus Maintenance Cost Fuel CellCutaway \$200 Thousands Fuel Cell35' Fuel Cell40' ElectricCutaway \$150 GasCutaway CNGCutaway CNG32 CNG40' \$100 \$50 \$0 2022 2023 2028 7025 2020 2023 7020 2029 2037 7032 -933 2034 ~035 2030 2037 ~030 7030 2030 PORO

Beaumont Transit Mixed Fleet Maintenance Costs

Capital expenditure for vehicle battery warranties and fuel cell (if applicable) & CNG overhauls for the course of the transition is approx. **\$850K** and covers the cost of this maintenance practice for **58** vehicles

Year

Annual Maintenance Costs FCEB

\$350 \$300 \$250 Annual Bus Maintenance Cost Fuel CellCutaway \$200 Fuel Cell35' Thousands Fuel Cell40' ElectricCutaway GasCutaway \$150 CNGCutaway CNG35' CNG40' \$100 \$50 \$0 2022 7023 2028 2025 2020 2023 1020 2029 2030 2037 2032 2038 7035 1030 1037 2039 PORO ~0₃₃

Beaumont Transit Fuel Cell Electric Fleet Maintenance Costs

Capital expenditure for vehicle battery warranties and fuel cell (if applicable) & CNG overhauls for the course of the transition is approx. **\$750K** and covers the cost of this maintenance practice for **58** vehicles

Year

Comparative Maintenance Costs Entire Transition Period, All Scenarios

Preliminary Facilities Cost Analysis

Facilities Concept Assumptions

- No land acquisition costs are included in the project costs.
- Infrastructure for baseline is not included since it is a continuation of today's operations.
- Assume 100% of buses will operate, so every bus has a dispenser.
- Assumes 2 dispensers per 150 kW charger and a 2 bus to 1 charger ratio
 - Only one transit bus can charge at a time.
 - Two cutaways can charge simultaneously at one charger, each charging at 75kW.
- Depot & Station MW capacity is assumed to start at 0.
- On-Route chargers assume each charger can serve 4 buses per hour to allow for each bus to have 15 minutes on the charger in any given hour.
 - Each on-route charger has just one dispenser (assumed to be pantograph-usable only by transit buses).
- Costs are applied in <u>the year prior</u> to non-ZEBs are replaced with ZEBs requiring the infrastructure to represent the actual year of expenditure for the RCTC implementation plan.

Facilities Cost Assumptions

- Construction projects are inflated 5.4% per year per **Caltrans Construction Index** (**CCI**).
- Hydrogen fueling projects are determined based on annual consumptions and known fueling technologies. All operators fueling solutions are decided based on fuel consumption need and approximately right-sized.
- Hydrogen infrastructure maintenance and operations is covered in the price of fuel in the fuel assessment.
- Charger maintenance is included as a \$3,000/per charger per year inflated at 3% per year.
- Infrastructure project pricing is determined through averages of recent CTE deployment projects as well as transit client procurement and industry product insights (proprietary).
 - IBI Group will explore site assessments and infrastructure recommendations for each operator's *selected* transition scenario further in tasks 4.3 & 4.4.

Annual Infrastructure Timeline and Costs Independent Hydrogen Infrastructure Serving Mixed Fleet

(Cté

Annual Infrastructure Timeline and Costs Shared Hydrogen Infrastructure Serving Mixed Fleet

Annual Infrastructure Timeline & Costs Independent Hydrogen Infrastructure Serving Fuel Cell Fleet

Annual Infrastructure Timeline & Costs Shared Hydrogen Infrastructure Serving Fuel Cell Fleet

Comparative Infrastructure Costs Entire Transition Period, All Scenarios

Total Cost of Ownership Analysis

Comparative Total Cost of Ownership

Entire Transition Period, All Scenarios

Beaumont Transit Total Cost of Ownership Comparison

Cté

Other Considerations

- These analyses are based on the Existing Conditions Report published in October 2022.
- Transition plans are living documents that are meant to be revisited as the market matures.
- There are operational costs and impacts that may increase the need for personnel such as ZE project managers, operations staff, trainings, grants managers, which are not included in this analysis.
- Scheduling changes are not included in this assessment. Operators can review operational modifications that may simplify their transitions to ZEV.
- Prices used in the analysis are a snapshot of today's market, while they are evidence-based predictions, the hydrogen market is nascent and will likely see large pricing drops with increased supply and commercialization.

Other Considerations Continued

- While shared infrastructure offers cost savings, there is potential for increased deadhead with shared infrastructure.
- EV Rate Schedules do have end dates projected, so electricity prices are likely to rise.
- Selecting a single technology can increase operational simplicity and cost savings.
- Selecting multiple technologies does make a fleet more resilient to grid-down or fuel supply shortage scenarios.

Next Steps

- Meeting with Beaumont Staff February 9
- Staff Recommendations
- Council Meeting for Technology Selection March 14
- ICT Rollout Plan Approval June 6
- Implementation Plan with Selected Transition(s) for all operators October 11

